Теория по эконометрике

Кластерный анализ — это совокупность методов, позволяю­щих классифицировать многомерные наблюдения, каждое из которых описывается набором признаков (параметров) Х1, Х2, …, Хk. Целью кластерного анализа является образование групп схо­жих между собой объектов, которые принято называть кластера­ми (другие названия — класс, таксон, сгущение). Методы кластерного анализа
Для оценки параметров идентифицируемой системы может использоваться косвенный метод наименьших квадратов. Пусть строится система взаимозависимых уравнений регрессии: Эта система является структурной формой, а параметры a10, b12, a11, a20, b21 и a22 — структурными коэффициентами. Подставим правую часть второго уравнения в первое уравнение вместо ; после преобразований получим:
Система одновременных уравнений может быть преобразована к приведенной форме, в каждом уравнении которой результативная переменная выражена только через факторные переменные. Первоначальная система в этом случае называется структурной формой. Для существования однозначного соответствия между параметрами структурной и приведенной форм необходимо, чтобы каждое уравнение системы
Экономические показатели, часто оказываются взаимозависимыми. Структура связей между переменными может быть описана с помощью системы одновременных уравнений регрессии, которые бывают двух видов: 1. В системе взаимозависимых линейных уравнений одни и те же результативные переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других:
Точечный прогноз результата Y представляет собой рассчитанное по уравнению регрессии значение Y в предположении того, что факторы X1, X2, …, Xp примут соответственно значения x01, x02, …, x0p: . Стандартная ошибка прогноза . Интервальный прогноз значения Y: , где tтаб — табличное значение t-критерия Стьюдента при и . Предполагается, что с вероятностью  фактическое значение Y
Для экономического анализа уравнения регрессии используют: 1. Средний коэффициент эластичности . Он показывает, на сколько процентов изменяется в среднем Y при увеличении только фактора Xj на один процент. 2. С помощью бета-коэффициентов можно упорядочить факторы по степени их влияния на Y: больший модуль бета-коэффициента соответствует более сильному влиянию. 3.
Автокорреляции остатков наблюдается тогда, когда значения предыдущих остатков завышают (положительная) или занижают (отрицательная) значения последующих. Положительная автокорреляция на графике остатков проявляется в чередовании зон положительных и отрицательных остатков: Отрицательная автокорреляция на графике выражается в том, что остатки «слишком часто» меняют знак:
Гетероскедастичность остатков проявляется в том, что их дисперсия (разброс) зависит от значений факторов: и: Гетероскедастичность приводит к тому, что может быть ошибочно принято решение о статистической значимости коэффициентов регрессии, тогда как на самом деле это не так. Выполнение предпосылки 3 может проверяться методом Глейзера, для чего рассчитывается коэффициент
Проверка предпосылки 1 может проводиться путем визуального анализа графиков остатков от значений факторов либо от предсказанных уравнением регрессии значений результата Y. Остатки считают случайными, если на графике они расположены в виде горизонтальной полосы: Выполнение предпосылки 5 может проверяться с помощью R/S‑критерия , где emax, emin — соответственно наибольший и
Коэффициенты уравнения регрессии b0, b1, b2, …, bp являются случайными величинами. Если выполняются предпосылки 1 — 4 МНК, то они обладают следующими свойствами: 1. Несмещенности. Математическое ожидание коэффициента равно соответствующему истинному параметру регрессии: . 2. Эффективности. Они характеризуются наименьшей дисперсией: . 3. Состоятельности. При увеличении числа
Пермь Питер Пятигорск