Диск радиусом 10 см вращается с угловым ускорением, равным рад/с2. Сколько оборотов сделает диск при изменении частоты вращения от 2.0 оборотов в секунду до 4.0 оборотов в секунду? Найти время , в течение которого это произойдет. Определить нормальное и тангенциальное ускорения точек на окружности диска в момент времени . Определить угол между векторами скорости и ускорения в тот момент времени, когда диск вращался с частотой 0.5 оборотов в секунду.
Решение:
Так как угловое ускорение постоянно, используем формулы равноускоренного вращения (21) – (22). Первое соотношение в (21) с учетом (24) сразу дает искомое время :
использованы данные условия задачи , . Полученное время можно просто подставить во второе соотношение (21) для нахождения угла поворота , а с учетом (23) – и числа оборотов :
Правильнее будет подставить полученное выше выражение в приведенную зависимость , исключив время и выразив ответ через данные условия задачи. В результате этой процедуры получим формулу (22):
Тангенциальное ускорение согласно (19) оказывается постоянным
Для определения нормального ускорения по формуле (20) следует найти угловую скорость в момент времени с помощью (21):
Угол между векторами скорости и ускорения можно найти, используя векторы и . Тангенциальное ускорение направлено по касательной к окружности, т.е. так же, как и скорость . Поэтому (см. рис. 9)
Подставляя сюда , где и , получаем