Экономические данные представляют собой количественные характеристики каких-либо экономических объектов или процессов. Они формируются под действием множества факторов, не все из которых доступны внешнему контролю. Неконтролируемые факторы могут принимать случайные значения из некоторого множества значений и тем самым обусловливать случайность данных, которые они определяют. Стохастическая (вероятностная) природа экономических данных обусловливает необходимость применения соответствующих статистических методов для их обработки и анализа.
Исследования показывают, что вариация каждого изучаемого признака находится в тесной связи с вариацией других признаков, характеризующих исследуемую совокупность единиц. Например, вариация уровня производительности труда зависит от степени совершенства применяемой технологии, оборудования, организации производства и др.факторов.
Признаки по их сущности и значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными (факторами). Признаки, изменяющиеся под действием факторных признаков, называются результативными.
Исследуя зависимости между признаками, необходимо выделить два типа связей:
– функциональные – характеризуются полным соответствием между изменением факторного признака и изменением результативной величины: определенному значению признака-фактора соответствует одно и только одно значение результативного признака. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Зная величину факторного признака, можно точно определить величину результативного признака. Например, величина заработной платы напрямую зависит от количества отработанных часов;
– корреляционные – между изменением двух признаков нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем, при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, т.к. в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия. Таким образом, при корреляционной связи изменение среднего значения результативного признака обусловлено изменением факторных признаков. Корреляционная связь является частным случаем стохастической, при которой причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем, при большом числе наблюдений.
Изучая взаимосвязи между признаками, их классифицируют по направлению, форме и числу факторов:
– по направлению связи делятся на прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора. Например, чем выше квалификация рабочего, тем выше его производительность труда. При обратной связи направление изменения результативного признака противоположно направлению изменения признака-фактора.
– по форме (виду функции, по аналитическому выражению) связи делят на линейные (прямая линия) и нелинейные (параболическая, гиперболическая и т.д.). При линейной связи с возрастанием значения факторного признака происходит равномерное возрастание (убывание) значения результативного признака;
– по количеству факторов, действующих на результативный признак, связи делят на однофакторные (парные) и многофакторные.
Содержание теории корреляции составляет изучение зависимости вариации признака от окружающих условий.
Корреляционный анализ решает следующие задачи:
Отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения тесноты связи между ними.
Обнаружение ранее неизвестных причинных связей.
Установление численных значений причинных связей между параметрами и достоверности суждений об их наличии.
Основная задача корреляционного анализа – выявление взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисление и проверка значимости множественных коэффициентов корреляции и детерминации.