Теория

Прогнозирование с применением уравнения регрессии

Уравнения регрессии применимо и для прогнозирования возможных ожидаемых значений результативного признака. При этом следует учесть, что перенос закономерности связи, измеренной в варьирующей совокупности, в статике на динамику не является, строго говоря, корректным и требует проверки условий допустимости такого переноса (экстраполяции), что выходит за рамки статистики и может быть сделано только специалистом, хорошо знающим объект (систему) и возможности его развития в будущем.

Ограничением прогнозирования на основании регрессионного уравнения, тем более парного, служит условие стабильности или по крайней мере малой изменчивости других факторов и условий изучаемого процесса, не связанных с ними. Если резко изменится “внешняя среда” протекающего процесса, прежнее уравнение регрессии результативного признака на факторный потеряет свое значение. В сильно засушливый год доза удобрений может не оказать влияния на урожайность сельскохозяйственной культуры, так как последнюю лимитирует недостаточная влагообеспеченность.

Прогнозируемое значение переменной У получается при подстановке в уравнение регрессии ожидаемой величины фактора Х:

(36)

Следует соблюдать одно ограничение: нельзя подставлять значения факторного признака, значительно отличающиеся от входящих в базисную информацию, по которой вычислено уравнение регрессии. При качественно иных уровнях фактора, если они даже возможны в принципе, были бы другими параметры уравнения. Можно рекомендовать при определении значений факторов не выходить за пределы трети размаха вариации, как за минимальное, так и за максимальное значение признака-фактора, имевшееся в исходной информации.

Прогноз, полученный подстановкой в уравнение регрессии ожидаемого значения фактора, называют точечным прогнозом. Вероятность точной реализации такого прогноза крайне мала. Необходимо сопроводить его расчетом значения средней ошибки прогноза или доверительного интервала прогноза с достаточно большой вероятностью (надежностью).

Доверительные интервалы зависят от следующих параметров:

– стандартная ошибка (37)

– отклонение от своего среднего значения ;

– количество наблюдений n;

– уровень значимости прогноза α.

В частности для прогноза будущие значения с вероятностью

(1 – α) попадут в доверительный интервал (38):

Расположение границ доверительного интервала показывает, что прогноз значений зависимой переменной по уравнению регрессии хорош только в случае, если значение фактора Х не выходит за пределы выборки. Иными словами, экстраполяция по уравнению регрессии может привести к значительным погрешностям.